Nourrir la planète au 21e siècle

Leçon 1 Entreprendre

À la recherche de nutriments

Coup d'œil

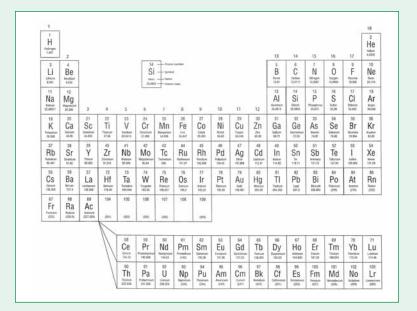
Aperçu

Les élèves explorent la signification de « nutriments essentiels ». Ils utilisent des tableaux périodiques pour comparer les éléments qui sont essentiels aux humains et aux plantes. Les élèves font des prédictions quant à la provenance dans l'environnement de chacun des éléments essentiels aux végétaux. Après une brève lecture au sujet de la fixation de l'azote, ils ont l'occasion de modifier leurs prévisions au sujet de l'azote.

Principaux concepts

- Les plantes ont besoin de 17 nutriments essentiels pour accomplir leur cycle de vie.
- Les plantes et les humains nécessitent un ensemble de nutriments très similaire.
- Les plantes se procurent leurs nutriments dans l'air, l'eau et le sol.

Objectifs


Après avoir terminé cette leçon, les élèves seront en mesure de :

- définir ce qu'est un élément essentiel;
- comparer les besoins en nutriments des plantes et des humains;
- expliquer pourquoi les plantes ne peuvent utiliser l'azote élémentaire qui se trouve dans l'air;
- identifier les sources de chacun des nutriments dont les plantes ont besoin.

Notions additionnelles pour l'enseignant

Consulter la section suivante dans Notions additionnelles pour l'enseignant :

2.0 Les plantes et leurs éléments essentiels

Au préalable

Photocopies

Activité 1	Original 1.1, Nutriments essentiels (préparer un document transparent) Original 1.2, Tableau périodique (faire une photocopie par élève et préparer un document transparent) Original 1.3, Nutriments essentiels pour les plantes (préparer un document transparent) Original 1.4, Nutriments essentiels pour les humains (préparer un document transparent)
Activité 2	Original 1.5, Sources de nutriments (faire une photocopie par élève et préparer un document transparent) Original 1.6, Utilisation de l'azote (faire une photocopie par élève)

Matériel

Activité 1	1 crayon couleur par élève
Activité 2	Aucun matériel à l'exception des photocopies

Préparatifs

Aucune préparation n'est nécessaire, à l'exception des photocopies et des documents transparents.

Marche à suivre

Note à l'enseignant

Dans cette activité, les termes « nutriment » et « élément chimique » sont interchangeables. Lorsque vous abordez les besoins des plantes, le carbone, l'oxygène et l'hydrogène se nomment des « nutriments non minéraux ». Mais attention, il n'est pas nécessaire de discuter de chacun des éléments essentiels, mais plutôt de se concentrer sur les éléments qui sont importants dans la fabrication de protéines, d'acides nucléiques, de lipides et de glucides.

Activité 1 : Nutriments essentiels

1. Commencez la leçon en expliquant que les scientifiques qui s'intéressent à la santé humaine doivent comprendre les besoins spécifiques de l'organisme. Demandez aux élèves : « De quoi ont besoin les humains pour vivre? »

Acceptez toutes les réponses. Écrivez les réponses des élèves au tableau ou sur un document transparent. Orientez la discussion afin d'obtenir comme réponses l'air (l'oxygène), l'eau et la nourriture. Certains élèves pourraient suggérer que le sommeil est également essentiel à la survie. D'autres pourraient proposer des conditions environnementales telles que la température et la pression atmosphérique ou des objets tels que des vêtements et un abri.

2. Rappelez aux élèves qu'il faut de l'énergie pour vivre. Demandez-leur : « Qu'est-ce que les gens se procurent dans l'environnement et qui est absorbé par le corps pour leur permettre de survivre? »

Les élèves devraient avoir retenu de leurs réponses précédentes que l'air, l'eau et la nourriture proviennent de l'environnement.

- 3. Demandez aux élèves : « Pourquoi avons-nous besoin d'air, d'eau et de nourriture pour survivre? »
 - Les élèves devraient mentionner que c'est l'oxygène dans l'air dont nous avons besoin.
 - Les élèves devraient pouvoir expliquer que nos cellules sont faites principalement d'eau. L'eau est le moyen qu'a la vie d'évoluer. Elle est essentielle à la chimie des cellules vivantes.
 - Les élèves devraient savoir que nous tirons de l'énergie chimique des aliments et qu'ils nous fournissent les éléments chimiques dont nos cellules ont besoin.
- 4. Rappelez aux élèves que les humains (et les animaux) consomment des végétaux et d'autres animaux pour se procurer de l'énergie chimique et des éléments nécessaires au fonctionnement des cellules. Demandez-leur : « Est-ce que les plantes ont besoin de nourriture? »
 - Gardez à l'esprit que le terme « nourriture » n'est pas précis, car il comprend à la fois la source d'énergie chimique et les nutriments. Certains élèves pourraient répondre que les plantes n'ont pas besoin de nourriture puisqu'ils obtiennent leur énergie par la photosynthèse. D'autres élèves pourraient dire que les plantes ont besoin d'eau ou qu'elles se procurent leur nourriture dans le sol. Si personne ne le mentionne, rappelez à la classe que les engrais peuvent être considérés comme de la nourriture pour les plantes.
- 5. Expliquez-leur qu'ils vont maintenant étudier les éléments chimiques essentiels à la croissance des plantes. Projetez le document transparent 1.1, *Nutriments essentiels*. Demandez à différents élèves de lire à voix haute les caractéristiques d'un élément essentiel.

Grand univers	Concepts généraux	Orientations	Concepts prescrits	Repères culturels possibles
Univers materiel	Organisation de la matière	La matière circule, de l'inerte au vivant et inversement. En effet, qu'elle soit inerte ou vivante, la matière est constituée d'atomes qui se combinent selon leurs affinités et qui forment des molécules d'éléments ou de composés plus ou moins complexes. Au cours de l'histoire, différents modèles d'organisation de la matière ont été proposés pour expliquer ses propriétés etses transformations. Le modèle atomique de Rutherford-Bohr est abordé en tenant compte de l'existence de deux types de particules (protons et électrons) et de leur organisation. Le noyau est constitué, entre autres, de protons. Les électrons, en nombre égal à celui des protons, circulent autour du noyau. Le tableau de classification des éléments recèle une foule d'informations. Certaines sont utilisées pour expliquer des propriétés des métaux, des non-métaux et des métalloïdes, et pour prévoir des comportements en mettant en relation la structure atomique et les propriétés des éléments.	 Substance pure (composé, élément) Modèle atomique de Rutherford-Bohr Familles et periods du tableau périodique 	Histoire Dimitri Mendeleïev Ernest Rutherford Neils Bohr John Dalton Intervention humaine Classification périodique des éléments

6. Distribuez à chaque élève une photocopie de l'original 1.2, Tableau périodique. Demandez à la classe de réfléchir sur la définition d'un « élément essentiel » et d'utiliser un crayon couleur pour ombrager les éléments de leur tableau qu'ils croient essentiels à la croissance des plantes. Si possible, les élèves devraient trouver un exemple de comment un élément donné est utilisé par la plante (par exemple, l'azote est utilisé pour produire des protéines et le phosphore pour produire de l'ATP).

Accordez environ 5 minutes aux élèves pour colorier les éléments. Cette étape vous permet d'évaluer la façon dont les élèves font le lien entre leurs connaissances en chimie et la biologie. Par exemple, des élèves pourraient répondre que le carbone sert à fabriquer du sucre. D'autres pourraient ne pas être en mesure de proposer une fonction pour des éléments qui sont nécessaires en quantités minimes.

Habituellement, de tels éléments sont nécessaires en tant que cofacteurs enzymatiques. Il n'est pas important de discuter de l'utilisation de chacun des éléments, mais il est important que les élèves comprennent que ces éléments sont essentiels à la construction des structures cellulaires et pour activer les réactions chimiques dans la cellule par des réactions enzymatiques.

7. Projetez le document transparent 1.2, *Tableau périodique*. Demandez à un volontaire de lire à voix haute les éléments ombragés sur son tableau périodique. Demandez à l'élève d'expliquer pourquoi il ou elle a choisi ces éléments en particulier. Demandez à d'autres élèves d'ajouter leurs prédictions à la liste.

Au fur et à mesure que les éléments sont lus, encerclez-les sur le document transparent. Les élèves n'ont pas à trouver la liste complète des éléments essentiels. Leurs réponses reflètent toutefois leurs connaissances sur la biologie végétale.

8. Expliquez-leur que vous allez maintenant leur révéler les éléments qui sont essentiels à la croissance des plantes et comparez-les à leurs prédictions. Projetez le document transparent 1.3, *Nutriments essentiels pour les plantes*.

Les élèves seront probablement surpris qu'autant d'éléments soient essentiels à la croissance des plantes. La comparaison entre les prédictions des élèves et les éléments essentiels doivent se rejoindre, en particulier pour ce qui est des éléments les plus abondants : carbone (C), hydrogène (H), azote (N), oxygène (O), phosphore (P) et soufre (S). Si les élèves ne l'ont pas déjà mentionnée, demandez-leur de nommer une molécule importante de la cellule qui nécessite du phosphore. Si vous ne l'avez pas encore mentionné, vous pouvez leur expliquer que la plus importante molécule d'énergie dans une cellule est l'adénosine triphosphate (ATP) et qu'elle comprend du phosphore.

Grand univers	Concepts généraux	Orientations	Concepts prescrits	Repères culturels possibles
Univers vivant	Systèmes – Fonction de nutrition Système digestif	L'être humain est tributaire d'un apport régulier d'aliments provenant d'autres organismes. Cet apport est indispensable, car il assure la construction et la réparation des tissus de même que la production de chaleur et d'énergie sous différentes formes (mécanique, calorifique, etc.).	■Types d'aliments (eau, protides, glucides, lipides, vitamines, minéraux)	Ressources du milieu Guide alimentaire canadien Directions régionales de la santé publique

 Demandez-leur : « Croyez-vous que les humains ont besoin des mêmes éléments essentiels que les plantes? »

Les réponses varieront. Certains élèves peuvent croire que puisque les humains et les plantes sont très différents, ils nécessiteront différents ensembles d'éléments. D'autres peuvent croire que puisque les plantes et les humains sont tous deux constitués de cellules, les éléments essentiels dont ils ont besoin sont similaires.

10. Projetez le document transparent 1.4, Nutriments essentiels pour les humains. Demandez aux élèves de commenter les similarités ou les différences entre cet ensemble d'éléments et celui pour les plantes qui leur a été présenté précédemment.

Les élèves devraient remarquer que les deux modèles ont plus de similarités que de différences. Pour rendre ce point plus clair, vous pouvez chevaucher les deux documents transparents 1.3, *Nutriments essentiels pour les plantes* et 1.4, *Nutriments essentiels pour les humains*.

Activité 2 : Sources de nutriments essentiels

Note à l'enseignant

Cette activité a été conçue pour susciter une réflexion chez les élèves sur la provenance des nutriments essentiels des plantes. Certains nutriments essentiels proviennent de plus d'une source. Aux fins de cette activité, vous voulez que les élèves prennent conscience que les plantes tirent leurs nutriments non minéraux (carbone, hydrogène et oxygène) de l'air et de l'eau, tandis que le reste provient de la terre.

- 1. Expliquez-leur que vous allez conclure la leçon avec une brève activité qui leur permettra d'observer d'où proviennent les nutriments des plantes.
- 2. Distribuez à chaque élève une photocopie de l'original 1.5, Sources de nutriments. Expliquez-leur que la feuille contient la liste des 17 nutriments essentiels des plantes. Demandez aux élèves de réfléchir sur la question suivante : où le plant de maïs se procure-t-il ses nutriments essentiels? Les élèves devraient pour chacun des nutriments (c'est-à-dire, chaque élément chimique) répondre soit l'air, l'eau ou le sol en cochant les cases appropriées sur la feuille.

Aux fins de cette activité, les élèves devraient considérer l'eau comme de l'eau de pluie (soit, avant qu'elle ne touche le sol). Par conséquent, cette eau ne devrait pas inclure les éléments que l'on trouve dans le sol et qui peuvent y être dissous. Les élèves sont libres de cocher plus d'une case pour un élément. Accordez leur 5 minutes pour remplir le tableau.

Grand univers	Concepts généraux	Orientations	Concepts prescrits	Repères culturels possibles
Terre et espace	Terre Cycles biogéochimiques	Un cycle biogéochimique décrit le processus naturel au cours duquel un élément chimique circule à l'état organique ou minéral, au sein de la biosphère. Le cycle du carbone est régulé par l'interaction entre les plaques continentales, l'atmosphère, les océans et les organismes vivants. Par la photosynthèse, les végétaux fixent le carbone sous des formes non volatiles, mais ce sont les roches carbonatées, précipitées ou construites par les êtres vivants qui constituent le plus grand réservoir de CO2. Bien que ce gaz soit libéré au cours d'éruptions volcaniques, les émissions anthropogéniques en modifient l'équilibre naturel. Certaines biotechnologies appliquées à l'environnement permettent d'accentuer le recyclage chimique du carbone. Bien qu'abondant, l'azote atmosphérique peut être assimilé par les végétaux uniquement par l'action de certaines bactéries. Le métabolisme des organismes vivants, ou leurs cadavres, produisent des déchets qui ramènent l'azote l'état minéral, et le cycle recommence. Des variations importantes du taux d'humidité, de la température ou du pH des sols affectent la régulation de ce cycle. Les végétaux constituent la seule source d'azote assimilable par les animaux, ce qui constitue une bonne raison de conserver la flore mondiale.	■ Cycles iogéochimiques • Cycle du carbone • Cycle de l'azote	Ressources du milieu Agence de l'efficacité énergétique Ressources naturelles Canada Consortium Ouranos Organisation Greenpeace

3. Projetez le document transparent 1.5, Sources de nutriments. Demandez à un volontaire de nommer les éléments qu'il ou elle a cochés comme provenant de l'eau.

Inscrivez un « E » à côté des éléments nommés par l'élève. Bien sûr, les élèves devraient mentionner l'hydrogène et l'oxygène. En fait, l'eau de pluie peut contenir de petites quantités d'autres éléments provenant des gaz et des particules de poussières que l'on trouve dans l'air. D'autres éléments devraient être mentionnés : C, Cl, N et S.

 Demandez à un autre volontaire de nommer les éléments qu'il ou elle a cochés comme provenant de l'air.

Inscrivez un « A » à côté des éléments nommés par l'élève. Les élèves devraient déduire que le plant de maïs se procure du carbone (dans le CO₂) et de l'oxygène (dans l'O₂) dans l'air. Certains élèves sauront

peut-être qu'une grande partie de l'atmosphère est composée d'azote (N.). La plupart des élèves ne sauront pas que l'azote ne peut pas être utilisé par le plant de maïs sous sa forme initiale. Ne corrigez pas cette fausse perception tout de suite. Ce sujet sera traité à l'étape 7. Comme mentionné à propos de l'eau, des petites quantités d'autres éléments peuvent aussi être présentes dans l'air à cause de la pollution.

5. Demandez à un autre volontaire de nommer les éléments qu'il ou elle a cochés comme provenant du sol.

Inscrivez un « S » à côté des éléments nommés par l'élève. Les élèves devraient avoir coché la plupart sinon la totalité des éléments. Le sol contient non seulement beaucoup d'éléments qui révèlent son histoire géologique, mais contient également des matières organiques provenant de plantes et d'animaux morts et de l'abondance de la vie microbienne qui y réside.

Réponses au document 1.5, Sources de nutriments

Nutriment essentiel		Source	
	Air	Eau	Sol
Bore (B)			S
Calcium (Ca)			S
Carbone (C)	А		S
Chlore (Cl)			S
Cuivre (Cu)			S
Hydrogène (H)	А	E	S
Fer (Fe)			S
Magnésium (Mg)			S
Manganèse (Mn)			S
Molybdène (Mo)			S
Nickel (Ni)			S
Azote (N)			S
Oxygène (O)	А	E	S
Phosphore (P)			S
Potassium (K)			S
Soufre (S)			S
Zinc (Zn)			S

- 6. Distribuez à chaque élève une photocopie de l'original 1.6, *Utilisation de l'azote*. Demandez aux élèves de lire la description et de répondre aux questions.
- 7. Lorsque les élèves ont terminé, demandez-leur : « Après avoir fait cette lecture, voulez-vous changer vos prédictions sur la source d'azote du plant de maïs? »

Les élèves devraient répondre que les plants de mais doivent se procurer leur azote dans le sol plutôt que dans l'air.

8. Demandez à un autre volontaire de lire sa réponse à la question 1 du document 1.6, *Utilisation de l'azote*.

Réponse à la question 1 :

1. Selon vous, qu'est-ce qui permet de convertir une grande partie de l'azote dont les plantes ont besoin en une forme qui leur est assimilable?

Les élèves devraient conclure que les bactéries (ou microbes du sol) sont responsables de la fixation de la plupart de l'azote utilisé par les plantes. Une partie de l'azote est aussi fixée par la foudre et les processus industriels, mais il s'agit que d'une très petite quantité.

9. Demandez à un autre volontaire de lire sa réponse à la question 2 du document 1.6, *Utilisation de l'azote*.

Réponse à la question 2 :

2. Pourquoi est-ce si important pour les agriculteurs que les légumineuses soient capables de fixer elles-mêmes leur azote?

Puisque les légumineuses peuvent se procurer elles-mêmes leur azote en une forme assimilable, les agriculteurs n'ont pas à se préoccuper de réapprovisionner le sol à l'aide d'engrais à base d'azote.

10. Demandez aux élèves de vous aider à résumer ce qui vient d'être dit sur la source d'éléments essentiels des plants de maïs.

Les élèves répondront probablement ce qui suit :

L'eau : l'hydrogène et l'oxygène.

L'air : le carbone et l'oxygène.

Le sol: tous les éléments essentiels.

- 11. Terminez la leçon en expliquant une nouvelle fois que les plantes se procurent leurs nutriments (le carbone, l'hydrogène et l'oxygène) dans l'eau, l'air et le sol, et que le reste provient du sol.
- 12. Expliquez que les agriculteurs ont besoin de savoir quels éléments essentiels se trouvent dans le sol et la quantité présente de chacun d'eux. Demandez aux élèves d'où proviennent les éléments essentiels que l'on trouve dans le sol.

Les réponses varieront. Pour l'instant, acceptez toutes les réponses. Utilisez des questions qui mettront en évidence le fait que les éléments essentiels dans le sol proviennent de multiples sources, dont :

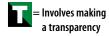
- des sources naturelles telles que l'érosion des roches;
- les effets de la foudre;

- la décomposition de matières végétales et animales, y compris les matières organiques du sol (la couche foncée à la surface du sol);
- les activités des humains telles que l'application par les agriculteurs et le public d'engrais commerciaux et organiques, ainsi que les déchets produits par les humains;
- les émissions provenant des industries et des automobiles.
- 13. Expliquez que dans la leçon suivante, ils étudieront la composition des sols et les façons dont les plantes et les sols interagissent les uns avec les autres.

Devoir facultatif

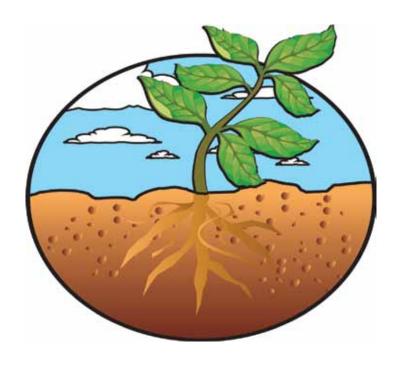
Les diététistes utilisent la pyramide alimentaire pour représenter une saine alimentation équilibrée contenant les quatre groupes d'aliments. Les plantes doivent également avoir une alimentation équilibrée. Demandez aux élèves de préparer un « plan alimentaire » pour les plantes.


Les élèves devraient se rappeler que les plantes se procurent leurs nutriments essentiels de trois sources : l'air, l'eau et le sol. Ces trois sources peuvent être considérées comme leurs groupes d'aliments. Demandez aux élèves de revoir les sources de chaque élément essentiel figurant sur l'original 1.5, Sources de nutriments. Les pourcentages nécessaires de chaque groupe d'aliments (la source) dans leur plan alimentaire peuvent être estimés en comptant le nombre d'éléments de chaque groupe d'aliments et en divisant ce nombre par le nombre total d'éléments essentiels (17). Par exemple, si un élève n'a nommé que l'hydrogène et l'oxygène comme éléments provenant de l'air, le pourcentage des nutriments nécessaires de ce groupe serait $2 \div 17 = 0,12$ ou 12 pour cent.


Note à l'enseignant

Notez que ce calcul suppose que chaque élément essentiel est nécessaire en quantités égales, ce qui n'est pas le cas. Le point important à souligner pour cet exercice est que la majorité des nutriments nécessaires à la plante provient du sol.

Plan de travail de la leçon 1	
Activité 1 : Nutriments essentiels	
Tâches de l'enseignant	Marche à suivre
Expliquer que les spécialistes de la santé doivent comprendre les besoins du corps. Demandez aux élèves : « De quoi ont besoin les humains pour vivre? »	Page 64 Étape 1
Rappelez aux élèves que les organismes vivants ont besoin d'énergie. Demandez aux élèves : • « Qu'est-ce que les gens se procurent dans l'environnement et qui est	Page 64 Étape 2 Page 65 Étape 3
absorbé par le corps pour leur permettre de survivre? » • « Pourquoi avons-nous besoin d'air, d'eau et de nourriture pour survivre? »	Ltape 3
Rappelez aux élèves que les humains consomment des plantes et des animaux pour se procurer l'énergie chimique et les éléments dont nos cellules ont besoin. ■ Demandez aux élèves : « Est-ce que les plantes ont besoin de nourriture? »	Page 65 Étape 4
Expliquez qu'ils étudieront les éléments chimiques nécessaires à la croissance des plantes. • Afficher le document transparent 1.1, Nutriments essentiels. • Demandez aux élèves de la lire à voix haute.	Page 65 Étape 5
Donnez une photocopie à chaque élève de l'original 1.2, <i>Tableau périodique</i> . ■ Demandez aux élèves d'ombrager les éléments qu'ils croient essentiels à la croissance des plantes.	Page 66 Étape 6
 Projetez le document transparent 1.2, Tableau périodique. Demandez à un volontaire de lire à voix haute les éléments qu'il ou elle a sélectionnés. Demandez-lui d'expliquer ses choix. Demandez d'autres réponses des autres élèves. 	Page 67 Étape 7
Expliquez que vous allez maintenant afficher les éléments essentiels à la croissance des plantes. Projetez le document transparent 1.3, Nutriments essentiels pour les plantes.	Page 67 Étape 8
Demandez-leur : « Croyez-vous que les humains ont besoin des mêmes éléments essentiels que les plantes? »	Page 67 Étape 9
Projetez le document transparent 1.4, Nutriments essentiels pour les humains. • Demandez aux élèves les similarités et différences entre ces éléments et les	Page 68 Étape 10


éléments présentés pour les plantes.

Tâches de l'enseignant	Marche à suivre	
Expliquez aux élèves qu'ils vont étudier les sources d'où les plants tirent leurs nutriments essentiels.	Page 68 Étape 1	
Donnez une photocopie à chaque élève de l'original 1.5, Sources de nutriments. ■ Demandez aux élèves d'inscrire sur leur feuille où (air, eau ou sol) la plante se procure chacun des nutriments.	Page 68 Étape 2	0
 Projetez le document transparent 1.5, Sources de nutriments. Demandez à un volontaire de nommer les éléments qu'il ou elle croit provenir de l'eau. Demandez à un volontaire de nommer les éléments qu'il ou elle croit provenir de l'air. Demandez à un volontaire de nommer les éléments qu'il ou elle croit provenir du sol. 	Page 69 Étapes 3 et 4 Page 70 Étape 5	ī
Donnez une photocopie à chaque élève de l'original 1.6, <i>Utilisation de l'azote</i> . ■ Demandez aux élèves de lire la description et de répondre aux questions.	Page 71 Étape 6	0
Demandez aux élèves s'ils veulent changer leurs prédictions à savoir où le plant de maïs se procure son azote.	Page 71 Étape 7	
Demandez à un volontaire de lire sa réponse à la question 1. Demandez à un volontaire de lire sa réponse à la question 2.	Page 71 Étapes 8 et 9	
Demandez aux élèves de résumer ce qui vient d'être dit sur la source d'où les plantes tirent leurs éléments essentiels Le carbone, l'hydrogène et l'oxygène proviennent de l'eau et de l'air, et le reste provient du sol.	Page 71 Étapes 10 et 11	
Expliquez que les agriculteurs doivent savoir quels éléments essentiels se trouvent dans le sol et en quelle quantité. Demandez aux élèves d'où proviennent les éléments essentiels que l'on trouve dans le sol.	Page 71 Étape 12	
Expliquez que dans la leçon suivante, ils étudieront la composition des sols et exploreront la façon dont les plantes et les sols interagissent.	Page 72 Étape 13	

Un élément essentiel

- 1. est nécessaire pour accomplir son cycle de vie;
- 2. ne peut être remplacé par un autre élément;
- 3. agit directement sur le métabolisme de la plante;
- 4. est nécessaire à de nombreuses plantes différentes.

with special

Leçon 1 Entreprendre

1.2 Tableau périodique

Nome Date

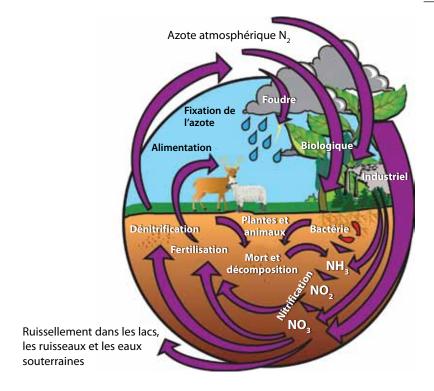
		Francium (223)	Ţ ≋	55 CS 0esium 132.906	Rubidium 85.467	19 X Potassium 39.098	11 Na Sodium 22.98977	3 Lithium 6.941	1.007	
		Radium (226.0)	D ⊗	Barium	38 Strontium 87.62	Calcium 40.08	12 Mg Magnesium 24.316	Benyllium 9,012	2	,
		Actinium (227.028)	S 8	Lanthanum	39 Y Yttrium 88.905	21 SC Standium 44.955	ω			
***************************************		(261)	104	Hafrium 17849	40 Zr Zroznium 91.224	22 	4			
90 Th Thorium 232.038	58 Cerium 140.12	(262)	105	73 Tantalum 180.948	Nib Nibium 92.906	23 V Vandum 50,9415	5			
91 Pa Protadinium 231.036	59 Praseodymium 140.908	(263)	106	74 W Tungsten 183.85	42 Mo Molybdenum 95.94	24 Cr Chromium 51.996	6	Silcon - 28.0855 -		
92 Uranium 238.029	Nd Neodymium 144.24	(262)	107	75 Re Rhenium 186.207	43 TC Technetium (%)	Z5 VIN Manganese 54,938	7		ļ	
Np Np Nepanium (244)	61 Pm Promethium (145)		108	76 OS 0smium 190.2	Ru Ru Buthenium	26 Fe	00	Atomic number Symbol Name Atomic mass		
94 Pu Plutonium (244)	Sm Samarium 150.36	(266)	109	77	Rhodium 102.906	27 Co Cobalt 58.933	9			
Am Americium (243)	63 Europium 151.96			78 Pt Platinum 195.08	Pd Palladium 106.42	28 Ni Nickel 58.69	10			
Cm Curium (247)	GA Gadolinium 157.25			79 Au 601d 196.967	47 Ag Shver 107.868	29 Cu Copper 63,546	=			
97 BK Berkelium (247)	65 Terburn 158.925			Hg Mercury 200.59	48 Cd Cadmium 112.41	30 Zn Zinc 85.39	12			
98 Cf Calfornium (251)	66 Dy Dysprosium			81	49 In Indium	31 Ga Sallium 89.72	13 Al Aluminum 26.9815	5 Beron 10.81	ಪ	
99 Es Einsteinium (252)	67 Holmium 164.930			82 Pb	50 Sn Tn 11871	32 Ge Germanium 72.59	14 Si Silicon 28.0855	Garbon 12.0111	14	
Fm Fermium (257)	68 Erbium 167.26			83 Bi 81 81 208 8890	Sb Antimory 121.75	AS Arsenic 74.92	Phosphorus	7 Nitrogen 14.0067	15	
Mendelevium (258)	69 Thulium			Po Polonium (209)	Tellurium	Selenium 78.96	16 S Sultur 32.06	000gen	16	
102 No Nobelium (259)	70 Yb Ytterbium 173.04			At Assatine (210)	53 	35 Br Bromine 79.904	17 Chlorine 35.453	9 Flourine 18.998	17	
103	71 Lutetium 174,96			Radon (222)	54 Xe Xenon 131.29	36 Kr Krypton 83.80	Argon	10 Ne Neon 20.179	Helium	8

	87 Fancium (222)	CS Castum 132.905	Rabidium Rs.467	Petessium 39.698	11 Na Sedum 22,98977	66 E □ ∞	Hydrogen 1
	Radium (22N.0)	Barium 1373	Streethan 87.82	Calcium 40.08	Mg Magnesium N.305	Beyfinn 9,012	2
	AC Activium	La La Lastearum 138.996	30 IB 300	Sc Scardum 41965	ω		
	(281)	72 Hf Hatrium 17849	Zr Zr Zrozesam pr.zzs	72 Tanium 47.88	4		
58 Ce Orium 140.12 Th	105	73 Tattalan 180,948	Nb Nobum 92.966	23 Vandum 50.3415	5		
Presedensian 148 568	106	74 W Tungston 183.85	Mo Mo Mojodensan St. S4	24 Cr Chronium 51.966	6	Situation 14	
Modumium 144.24	107	Re Re Rhenium 186.200	To Technolium	Mn Mn Manganese 54 533	7	Si Sprind Sitte Marie 20,0005 Aceric mass	
Pm Pm (148) SS Np Np Np	108	76 OS Ournium 180.2	Ruthenium 101.07	Fe state	00	a country of	
62 Sm Samusiam 196.38 Pu Pu Pu Pu (244)	109	Ti Hidiam	Rh Rhodum 102,966	Cooker strategy	٥		
Europiam 1951 Sel Americiam (243)		78 Pt Pteinum 116.88	Pd Pd Pdladium 10642	Nichal Sil 89	8		
Gd G		Au 6044 1166.867	Ag Saleer 10x2.868	Cu Cu copper ed.see	ä		
SS Tablam 1988 BK		Hg Marany 200.59	Cadmium 1124	Zn Znssssssssssssssssssssssssssssssssss	12		
Opposition 1982 Sec. Cif. Californium (251)		81 Thalliam 204.383	Indian	Ga Gallum 89.77	Aluminum 26.9015	Beneau 10.81	13
67 H0 Hotenam 164.500 Escriptions		Pb Land 20072	Sn 11871	Ge Genarium 72.59	Silvan Silvan	Carbon 12,0111	4
Enternance (227)		83 Birmath 208.880	Sb Authropy 121.75	As As Arsenio	Phesphorus 30.873	Natropen 14,0067	15
69 Tm Thulann 1988 204 101 Md Mendelensten (208)		Polonium (289)	Te Te Telurium 127.60	Selentum 78.88	30.06 30.06	0 0 0 15,5994	16
70 Yb Yb Ybsolum 172.64 102 No Noodum (289)		Att Attaine	53 Iodes 126.905	85 Bromine 79.964	Chlorine 38.453	9 Fourise 18.998	17
71 Luteium 174.96 108 Luteium 108 LT Luteium 108 108 108 108 108 108 108 108 108 108		Rn Rn Ruden (222)	Xe Xe 131.29	36 Krypten III.100	18 Ar Argen 30.948	Ne Nee 20,179	18 Helium 4 moos

		# T =	CS Crawn	Rb In 48	I ×	Na :	\$ E =	T-
		Ra Rates	Ba Ord	## S #	Ca Ca	Mg Mg	Be Be	2
		AC Activisms	La Lament Lament	# m ≺ 8	SC 23	ω		
	1	989 104	10 to	Zr Zr Etropan 81.254	### 1 22	.		
Ĭ∃s	# C C 8	(780) 105	11 Ta	Nb Nishion 811 366	Street Street	u		
Pa	Pr	90 m	in i	Mo Mo Mo Majorimus Majorimus	Cr Cr	0	#I Oz	
[⊂s	Nd Ng	58g 107	Re Re	ಾಕ್ಷದ	Mn 28	7	Si Sprind	
Np 8	Pm Pm	8	SO 28	Ru Ruthenium	#1 T 8	æ	Special Special Harra Sturpt mast	
Pu	Sm Sm 82	Gas 100	T T	Rh Rh	Co Goden	۰		
Am 8	E a		Pt 78	Pd Fiden	# [28	5		
Cm 8	PD Ga		Au Diagram	Ag Ag	Cu Cu cosses cos cosses cosses cosses cosses cosses cosses cosses cosses cosses cos cos cos cos cos cos cos cos cos co	=		
BK ST	Tb Hates		Hg House	11 Ca	uz Zn	ಪ		
Ω 50 50 50 50 50 50 50 50 50 50 50 50 50 5	Dy Opportunion 162 to		20 Th 20 E	148 T 45	Ga same	Name And Park	i 0 ∞	3
Es s	HO HO HASSE		Pb 8	S C	Ge Se	Si aless M aless M aless	the Co	Z.
ĮF.	ж. Д 28		83 Bi- 24 and	dS s	AS Name	D IS	1 m Z 7	15
Md	Talker Talker		Po Su	Te Tallytian	₹ Se x	# (N H	# O =	16
No 102	44 A		9 t A 2	± 1 − 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2	Br 8	Cherry No.est	il no	17
[Li	Line Transfer Transfe		₽ Ra	2 % II	####### 38	NA AL	N Z S	4.00g

1.5 Sources de nutriments

Nom			
Date			



Nutriment essentiel	Source				
	Air	Eau	Sol		
Bore (B)					
Calcium (Ca)					
Carbone (C)					
Chlore (CI)					
Cuivre (Cu)					
Hydrogène (H)					
Fer (Fe)					
Magnésium (Mg)					
Manganèse (Mn)					
Molybdène (Mo)					
Nickel (Ni)					
Azote (N)					
Oxygène (O)					
Phosphore (P)					
Potassium (K)					
Soufre (S)					
Zinc (Zn)					

1.6 Utilisation de l'azote

Name			
Date			

hez plusieurs plantes, la croissance est limitée à cause d'un manque d'azote. Cela peut paraître surprenant puisque l'air contient près de 80 pour cent d'azote. Toutefois, l'azote (N₂) que contient l'air ne peut être assimilé par les plantes dans sa forme actuelle. D'abord, elle doit être combinée à d'autres éléments tels que l'hydrogène ou l'oxygène sous la forme d'ammonium (NH₄+) ou de nitrate (NO₃-) avant qu'une plante ne puisse l'assimiler.

Questions

- 1. Observez le graphique du cycle de l'azote. Selon vous, qu'est-ce qui permet de convertir une grande partie de l'azote dont les plantes ont besoin en une forme qui leur est assimilable?
- 2. Les plantes de la famille des légumineuses, telles que les pois et les haricots, vivent dans une relation de symbiose avec les bactéries qui vivent dans leurs racines. Les bactéries se nourrissent des sucres de la plante pour produire de l'énergie. En retour, les bactéries prennent l'azote de l'air et la convertissent en une forme assimilable par les plantes. Pourquoi est-ce si important pour les agriculteurs que les légumineuses puissent fixer leur propre azote?

